[1K0201-08-06](学生発表:修士課程) ディープラーニングによる発破に伴う起砕物の粒度予測に関する研究
○弦川 聖1、笹岡 孝司1、濵中 晃弘1、島田 英樹1、﨑山 智彦2、仲井 亮平2、一ノ瀬 政友3(1. 九州大学、2. 春日鉱山株式会社、3. 都市基盤・環境・資源センター)
司会:武川順一 (京都大学)
キーワード:
ディープラーニング、発破、起砕物
露天掘り鉱山では、効率性および経済性の観点からベンチ発破を用いた採掘が行われている。発破により生じる起砕物の粒径(起砕物粒度)を制御する手法が未だ確立されているとは言い難く、起砕物粒度が一定しないことによる作業効率の低下が問題となっている。そこで本研究では、発破試験データを基に発破規格の各パラメータが起砕物粒度に与える影響を評価し、起砕物粒度の予測モデルを作成することで、露天掘り鉱山における起砕物粒度予測の手法に関して知見を得ることを目的とする。
