Presentation Information

[25a-P01-44]Emergent magneto-inductance effect in permalloy thin films on flexible polycarbonate substrates at room temperature

〇Yu Matsushima1, Zijing Zhang1, Yuri Ohashi1, Tsunagu Hatakeyama1, Gang Xiao2, Takumi Funato3,4, Mamoru Matsuo4,5,6, Hideo Kaiju1,3 (1.Keio Univ., 2.Brown Univ., 3.CSRN, Keio Univ., 4.KITS, UCAS, 5.CEMS, RIKEN, 6.ASRC, JAEA)

Keywords:

emergent inductance,domain wall,flexible

Emergent inductance has attracted significant interest for its relevance in both interesting fundamental physics and practical applications in magnetic devices that demand miniaturization without compromising inductance. In this study, we report the discovery of a stepwise magnetic field-induced emergent magneto-inductance (EML) effect in permalloy (Py) thin films deposited on polycarbonate (PC) substrates. Remarkably, Py/PC devices exhibit an exceptionally large inductance variation exceeding 1 μH at room temperature, and intriguingly, a sign reversal of inductance occurs around the zero magnetic field. The dependencies of the EML effect on frequency, step magnetic field changes, and film width can be explained from the theory based on the spin motive force driven by transient domain wall motion. This study opens up exciting avenues for advancing our understanding of emergent inductance in fundamental physics and paves the way for practical applications in flexible magnetic devices.