Session Details

R1: Characterization and description of minerals (Joint Session with The Gemmological Society of Japan)

Wed. Sep 10, 2025 3:30 PM - 6:00 PM JST
Wed. Sep 10, 2025 6:30 AM - 9:00 AM UTC
Oral Presentation A (Room No. 2)
Chairperson:Koichi Momma(National Museum of Nature and Science), Yohei Shirose(Ehime University), Masanori Kurosawa(University of Tsukuba)

[R1-01]Trends in new minerals

*Ritsuro MIYAWAKI1 (1. National Museum of Nature and Science)
Comment()

[R1-02]Amaterasuite, a new mineral in jadeitite from Osayama, Okayama Prefecture, Japan

*Daisuke HAMANE1, Mariko Nagashima2, Yuki Mori3, Masayuki Ohnishi, Norimasa Shimobayashi4, Takashi Matsumoto5, Mitsuo Tanabe (1. Univ. of Tokyo, 2. Yamaguchi Univ. Sci., 3. JASRI, 4. Kyoto Univ. Sci., 5. Rigaku)
Comment()

[R1-03]Horiite, a new mineral, from Taguchi mine, Aichi Prefecture

*Daisuke HAMANE1, Mariko Nagashima2, Yuki Mori3, Masayuki Ohnishi, Tomohiro Ishizaka, Shinji Inoue (1. The University of Tokyo, 2. Yamaguchi University, 3. JASRI)
Comment()

[R1-04]Reinvestigation of crystal chemistry of nakauriite

*Koichi MOMMA1, Hideyuki Hayashi1, Ritsuro Miyawaki1, Shoichi Kobayashi2, Shigetomo Kishi (1. Nat’l. Mus. Nat. Sci., 2. Okayama Univ. Sci.)
Comment()

[R1-05]Rhönite in “Common Hornblende” from Mt. Tawarayama (Goou-toge), the outer-rim of Mt. Aso, Kumamoto Prefecture

*Seiichiro UEHARA1, Haruki Inoue2 (1. Kyusyu Univ. Museum, 2. Enecom Co., Ltd.)
Comment()

[R1-06]Occurrence of Zincolibethenite at the Ishibemidoridai Outcrop, Konan City, Shiga Prefecture, Japan

*Masaki Nishio1, Norimasa Shimobayashi1 (1. Kyoto Univ. Sci.)
Comment()

[R1-07]Development of an intermediate-type fixed dead time X-ray counting system for electron probe microanalysis (EPMA) with proportional counter

*Takenori KATO1 (1. Nagoya University)
Comment()

[R1-08]Intensity Tensor and Peak Separation of Mössbauer Spectra of Hornblende Single Crystal.

*Keiji SHINODA1, Yasuhiro Kobayashi2 (1. Osaka Met. Univ., 2. KURNS)
Comment()

[R1-09]Development of a mineral identification method using SEM-EDX spectra based on deep learning

Ryosei Hirai1, *Yusuke SETO1 (1. Osaka Metropolitan University)
Comment()