Session Details
[22p-52A-1~17]23.1 Joint Session N "Informatics"
Fri. Mar 22, 2024 1:00 PM - 5:45 PM JST
Fri. Mar 22, 2024 4:00 AM - 8:45 AM UTC
Fri. Mar 22, 2024 4:00 AM - 8:45 AM UTC
52A (Building No. 5)
Teruyasu Mizoguchi(U of Tokyo), Yuma Iwasaki(NIMS), Yasunobu Ando(AIST)
[22p-52A-1]Prediction of magnetocrystalline anisotropy constant in
transition-metal alloys using machine learning
〇Ren Sudo1, Oogane Mikihiko1 (1.Tohoku Univ.)
[22p-52A-2]Exploration of Sublimation Materials for Pattern Collapse Mitigation using Machine Learning on Limited Experimental Data
〇Shogo Kunieda1, Yuta Sasaki1, Yosuke Hanawa1, Masayuki Otsuji1, Hitoshi Kamijima2, Toshiaki Shintani2, Shota Nakajima2, Ryo Yoshida3 (1.SCREEN Holdings Co., Ltd., 2.Research Institute of Systems Planning. Inc., 3.The Institute of Statistical Mathematics)
[22p-52A-3]Development of Organic Semiconductor using Large-Scale Quantum Chemical Calculations and Material Descriptors based on the Wave Functions
Nana Komoto1, 〇Shinya Nishino1, Takeo Hoshi2 (1.Sumicomo Chemical, 2.NIFS)
[22p-52A-4]Proposal of an Approach to Explore Novel Photocatalytic Materials by Two-Step Machine Learning Model
〇Wataru Takahara1, Ryuto Baba1, Yosuke Harashima1,4, Tomoaki Takayama1,4, Shogo Takasuka1, Yuichi Yamaguchi2,3, Akihiko Kudo2,3, Mikiya Fujii1,4,5 (1.NAIST, 2.TUS, 3.CVRC RIST TUS, 4.NAIST DSC, 5.NAIST CMP)
[22p-52A-5]Search for Solid Electrolyte Materials using Genetic Algorithm and Machine Learning Force Field
〇Koki Nakano1, Hisatsugu Yamasaki1, Makoto Saito1 (1.Toyota Motor Corp.)
[22p-52A-6]Efficient exploration of high-Tc superconductors by gradient-based inverse problem solving
〇Akihiro Fujii1, Koji Shimizu1, Satoshi Watanabe1 (1.Tokyo Univ.)
[22p-52A-7]Materials design for dielectric materials using graph neural networks and Monte Carlo sampling
〇(M2)Yuho Shimano1, Alex Kutana1, Ryoji Asahi1 (1.Nagoya Univ.)
[22p-52A-8]Graph neural networks learning for superconducting temperatures on partially-substituted materials
〇Kensei Terashima1, Taku Tou1,2, Yoshihiko Takano1,3 (1.NIMS, 2.Tokyo Univ. of Sci., 3.Univ. of Tsukuba)
[22p-52A-9]Thermoelectric material property mapping and optimal material estimation using crystal grap
〇Yusuke Hashimoto1, Jiu Xue2, Li Hao2, Takaaki Tomai1 (1.FRIS Tohoku Univ., 2.AIMR Tohoku Univ.)
[22p-52A-10]Development of a Graph Neural Network Considering Anisotropy: Application to Prediction of Anisotropic ELNES/XANES
〇Kiyou Shibata1, Teruyasu Mizoguchi1 (1.The Univ. of Tokyo)
[22p-52A-11]Efficient method for extracting basis functions and estimating layer structure using electron spectroscopy simulator
〇shunichi yoneda1, Ryo Murakami2, Kenji Nagata2, Hiroshi Shinotsuka2, Hideki Yoshikawa2, Hiromi Tanaka1, Shigeo Tanuma2 (1.Yonago college, 2.NIMS)
[22p-52A-12]Optimal Experimental Design for X-ray Absorption Spectroscopy Measurement
〇Yusei Ito1, Yasuo Takeichi1, Hideitsu Hino2, Kanta Ono1 (1.Osaka Univ., 2.ISM)
[22p-52A-13]Relationship Connection between Crystal Structure, XAS Spectrum and Electronic State of BN Using Machine Learning
〇(B)Reika Hasegawa1, Arpita Varadwaj1, Alexandre Foggiatto1, Masahito Niibe2, Yasunobu Ando3, Iwao Matsuda2, Masato Kotsugi1 (1.Tokyo Univ. of Sci., 2.ISSP, 3.AIST)
[22p-52A-14]Direct prediction of absorption coefficient spectrum from crystal structure using Crystal Graph Convolutional Neural Network
〇Yuki Yamamoto1, Masahiro Hayashi1, Ryosuke Oka1, Hiroyuki Fujiwara1 (1.Gifu Univ.)
[22p-52A-15]Properties of Convolutional Neural Networks for Predicting Space Groups from X-ray Diffraction Patterns of Inorganic Materials and Its Application to Experimental Data
〇Hiroyuki Ozaki1, Naoya Ishida1, Tetsu Kiyobayashi1 (1.AIST)
[22p-52A-16]Automatic identification of crystalline phases with Bayesian estimation in XRD
〇Ryo Murakami1, Yoshitaka Matsushita1, Kenji Nagata1, Shouno Hayaru2, Hideki Yoshikawa1 (1.NIMS, 2.UEC)
[22p-52A-17]Crystal Structure Generation by Joint Generation of Equivariant and Invariant Features Using a Diffusion Model
〇Izumi Takahara1, Kiyou Shibata1, Teruyasu Mizoguchi1 (1.IIS, UTokyo)