講演情報
[21p-D901-14]Enhancing Performance of Convolutional Neural Network-based Epileptic ·Electroencephalogram Diagnosis by Asymmetric Stochastic Resonance
〇(M2)Zhuozheng Shi1, Zhiqiang Liao1, Hitoshi Tabata1 (1.Univ. of Tokyo)
キーワード:
Stochastic Resonance、Epileptic Electroencephalogram、Convolutional Neural Network
Epilepsy is a chronic disorder that leads to transient neurological dysfunction and is clinically diagnosed primarily by electroencephalography. Several intelligent systems have been proposed to automatically detect seizures, among which deep convolutional neural networks (CNNs) have shown better performance than traditional machine-learning algorithms. Owing to artifacts and noise, the raw electroencephalogram (EEG) must be preprocessed to improve the signal-to-noise ratio prior to being fed into the CNN classifier. However, because of the spectrum overlapping of uncontrollable noise with EEG, traditional filters cause information loss in EEG; thus, the potential of classifiers cannot be fully exploited. In this study, we propose a stochastic resonance-effect-based EEG preprocessing module composed of three asymmetrical overdamped bistable systems in parallel (shown in Figure 1). By setting different asymmetries for the three parallel units, the inherent noise can be transferred to the different spectral components of the EEG through the asymmetric stochastic resonance effect. In this process, the proposed preprocessing module not only avoids the loss of information of EEG but also provides a CNN with high-quality EEG of diversified frequency information to enhance its performance. By combining the proposed preprocessing module with a residual neural network, we developed an intelligent diagnostic system for predicting seizure onset. The developed system achieved an average sensitivity of 98.96% on the CHB-MIT dataset and 95.45% on the Siena dataset, with a false prediction rate of 0.048/h and 0.033/h, respectively. In addition, a comparative analysis demonstrated the superiority of the developed diagnostic system with the proposed preprocessing module over other existing methods.